

Evaluation Report MRX147 D-Dimer on Coatron M4

Performance Characteristics

Contents

1	Intr	odu	ction	3
2	Red	ager	nt Information	3
3	Per	form	ance – instrument specific	4
	3.1	Cal	libration curve	4
	3.2	Rep	portable range	5
	3.2	.1	Lower detection limit	5
	3.2	.2	High-dose response	5
	3.3	Pre	cision	6
	3.4	Inte	erfering substances	7
	3.4	.1	Hemoglobin	7
	3.4	.2	Bilirubin	7
	3.4	.3	Lipids	8
	3.4	.4	Heparin (non-fractionated)	8
	3.4	.5	Heparin (Iow molecular weight)	8
	3.5	Cor	rrelation	9
4	Per	form	nance - instrument unrelated	9
	4.1	Spe	ecificity	9
	4.2	Stal	bility	9

Introduction

The performance data below was collected on a Coatron M4 (TECO Application sheet for D-DIMER MRX147 analysis Rev. 18.08.2008). The results are transferrable to Coatron M2, Techrome IV (405 nm filter), Humaclot Duo and Humaclot Jr.

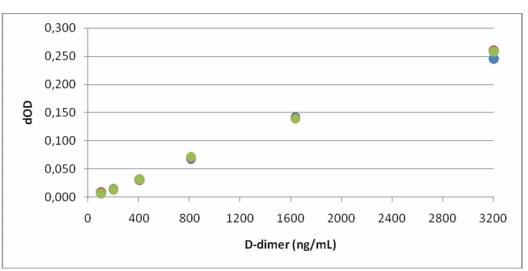
Reagent Information

MRX147 D-dimer is a micro-particle enhanced immunoassay for the quantitative determination of the fibrin degradation product D-dimer in human plasma. MRX147 D-dimer consists of a pair of components, Latex Reagent and Reaction Buffer. When these two reagents are mixed, together with a D-dimer containing plasma sample, the particles will agglutinate and give rise to an increase in light scattering. When this reaction is monitored in an instrument, having the necessary photometric features, it will be observed as an increase in absorbance over time. The rate of this reaction is proportional to the amount of D-dimer antigen in the sample.

By virtue of its particles size, MRX147 D-dimer is suitable for instruments with optical channels in the range 400 – 600 nm. At higher wavelengths, the light scattering properties of the particles decrease, which will lower the signal. Conversely, at lower wavelengths the particles would scatter too much light, reducing the residual signal seen by the detector close to its noise level.

MRX147 D-dimer Latex Reagent is manufactured by covalent coupling of D-dimer specific monoclonal antibodies to sub-micron sized particles. The particles are suspended in a buffer containing blockers to reduce non-specific interactions and preservatives to prolong shelf-life.

MRX147 D-dimer Reactions Buffer contains agents that facilitate particle agglutination. For each batch of Latex Reagent, a specific batch of Reaction Buffer is also produced and fine-tuned to render the particles the same specific agglutination rate, lot-to-lot.


Performance – instrument specific

Calibration curve

To demonstrate the system's ability to reproducibly construct calibration curves, three separate calibration curves were established. D-dimer Calibrator 3200 (MRX144) was diluted with Dilution Buffer (lot # 82307), using an analytical balance, to obtain the calibration samples. To construct each calibration curve, the mean of a duplicate run was used. The three curves (Table 1, Figure 1) are well in agreement with each other. The calibration curves are linear over the range. The software of the instrument uses a point-to-point function for the calibration data.

DD (ng/mL)	dOD Curve 1	dOD Curve 2	dOD Curve 3	Average	Std. Dev.	CV
99	0.007	0.009	0.006	0.007	0.0013	17.6%
199	0.015	0.014	0.012	0.014	0.0008	5.5%
402	0.032	0.031	0.031	0.031	0.0008	2.5%
810	0.068	0.070	0.071	0.070	0.0015	2.2%
1634	0.142	0.140	0.139	0.140	0.0015	1.1%
3202	0.243	0.260	0.258	0.255	0.0076	3.0%
Slope	7.80 x 10 ⁻⁵	8.21 x 10 ⁻⁵	8.17 x 10 ⁻⁵	8.06 x 10 ⁻⁵	2.23 x 10 ⁻⁷	2.8%
Correlation	0.995	0.999	0.998	0.997	-	-

Table 1: Data for three separate calibration curves

Figure 1: Three superimposed calibration curves

Reportable range

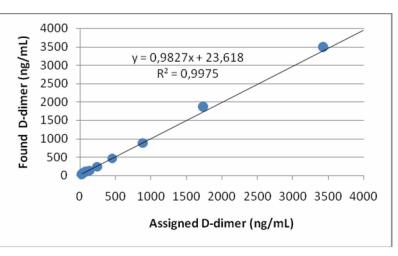
The reportable range of MRX147 D-dimer on Coatron M4 is 100 – 5000 ng/mL. Higher values, reported by the instrument as >5000 (or xxx), should be diluted and re-assayed. There is no prozone effect below 100 000 ng/mL. Please find the data below, supporting these statements.

Lower detection limit

Six samples in the lower range were assayed six times each, using the Sysmex CA-1500. The lower limit of detection (functional sensitivity) was taken as the lowest D-dimer concentration at which the coefficient of variation was better than 20%.

Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Average	Std. Dev.	CV
444	433	454	465	475	475	458	17.1	3.7%
211	235	235	199	271	223	229	24.9	10.9%
115	103	127	115	115	163	123	21.0	17.1%
80	115	115	103	80	68	96	17.5	18.4%
68	68	68	92	68	56	70	11.8	16.9%
44	56	56	56	44	68	54	9.0	16.7%
56	44	0	0	56	0	26	28.8	111%

Table 2: Variation of samples in the lower range (ng/mL)


High-dose response

A dilution series of seventeen samples, with a wide range of D-dimer concentrations, was prepared. These samples were assayed on the Coatron M4 (Table 3, Figure 2). Up to 4000 ng/mL, all assays results line up on a Found/Assigned-slope close to unity. For higher values, a feature built into the instrument software, detects the non-linearity within the time-window of the measurement, and reports >5000 (or xxx). This prevents high samples being falsely reported within the reportable range. In other words, there is no prozone effect below 100 000 ng/mL.

Table 3: High-dose response

D-dimer (ng/mL)							
Assigned	Found						
23	26						
38	54						
50	70						
77	96						
131	123						
239	229						
454	458						
881	881						
1735	1871						
3425	3500						
4270	4079						
6804	>5000						
13521	>5000						
26772	>5000						
53455	XXX						
106345	XXX						

Precision

dF, n(k-1)

35

The precision of MRX147 D-dimer on Coatron M4 was determined by running two samples, one in the lower range and another in the middle of the measuring range, at seven different occasions. At each occasion, the samples were assayed six times each. Moreover, these occasions were divided over four different days, with a new calibration each day. The data below (Table 4, Table 5) demonstrate good precision with a total variation of 9.3% in the lower range, and 5.0% in the middle of the measuring range.

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 290 303 301 301 210 307 239 n = 7 runs 264 277 313 277 283 283 264 replicates k = 6 228 303 277 301 295 283 277 264 264 301 301 271 271 264 295 303 290 313 265 295 290 277 290 204 289 295 307 239 Mean 9.9 Mean 284 284 277 289 275 291 262 280 SD (of mean)= Variance 312 181 2316 238 1118 220 421 686 Var (of mean)= 97.1 48.1 14.8 SD 17.7 13.4 15.4 33.4 20.5 26.2 CV % 6.2 4.7 17.4 5.3 12.2 5.1 7.8 9.3 Within run **Between run** Total Variance Variance 671 Variance 686 16.2 SD 26.2 SD 4.0 SD 25.9 CV % 9.4 CV % 1.4 CV % 9.3

Table 4: Precision data in the lower measuring range (ng/mL)

Table 5: Precision data in the middle of the measuring range (ng/mL)

6

dF, (n x k)-1

41

	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7			
	1700	1712	1544	1593	1482	1568	1623		runs	n = 7
	1700	1776	1581	1520	1543	1555	1751		replicates	k = 6
	1764	1725	1544	1642	1555	1641	1674			
	1725	1700	1678	1678	1592	1690	1571			
	1700	1725	1617	1630	1568	1519	1623			
	1661	1648	1605	1605	1519	1519	1815	Mean		
Mean	1708	1715	1595	1611	1555	1582	1676	1635	SD (of mean)=	64.1
Variance	1160	1735	2579	2896	748	4815	8303	3176	Var (of mean)=	4115
SD	34.1	41.7	50.8	53.8	27.4	69.4	91.1	56.4		
CV %	2.0	2.4	3.2	3.3	1.8	4.4	5.4	3.4		

dF, n-1

Within run		Between run		Total	
Variance	3177	Variance	3585	Variance	6718
SD	56.4	SD	59.9	SD	82.0
CV %	3.5	CV %	3.7	CV %	5.0
dF, n(k-1)	35	dF, n-1	6	dF, (n x k)-1	41

Interfering substances

Hemoglobin

A D-dimer control in the middle of the reportable range was divided into six sample tubes. Each tube was spiked with different concentrations of Hemoglobin (Sigma H7379, 048K7555). The assay results (Table 6) show that MRX147 D-dimer is affected by Hemoglobin concentrations above 4 g/L. At the wavelength which the Coatron M4 operates (400 nm), Hemoglobin has it prime adsorption peak. For this reason, the light-transmittance is very low in the highest Hemoglobin concentrations tested, resulting in poor precision. However, for normal samples this is not a problem as the hemoglobin concentration in normal samples is usually in the range 0.02-0.03 g/L. In conclusion, Hemoglobin has no effect on the assay below 4 g/L.

Hemoglo bin g/L	Replicate 1 ng/mL	Replicate 2 ng/mL	Replicate 3 ng/mL	Replicate 4 ng/mL	Mean ng/mL	Recovery
0.0	768	758	747	768	760	100%
2.0	779	768	747	822	779	102%
4.0	800	726	779	779	771	101%
6.0	622	768	674	643	677	89%
8.0	726	465	758	548	624	82%
10.0	390	528	378	622	480	63%

Table 6: Effect of Hemoglobin on a D-dimer control

Bilirubin

A D-dimer control in the middle of the reportable range was divided into six sample tubes. Each tube was spiked with different concentrations of Bilirubin (Sigma B4126; 016K1364). The assay results (Table 7) show that MRX147 D-dimer is affected by Bilirubin concentrations above 0.1 g/L. Just like for Hemoglobin, the absorbance of Bilirubin is high at 400 nm resulting in poor light transmittance. The Bilirubin concentration in normal samples is below 0.012 g/L. In conclusion, Bilirubin has no effect on the assay below 0.1 g/L.

Table 7: Effect of Bilirubin on a D-dimer control

Bilirubin g/L	Replicate 1 ng/mL	Replicate 2 ng/mL	Replicate 3 ng/mL	Replicate 4 ng/mL	Mean ng/mL	Recovery
0.0	845	726	800	834	801	100%
0.1	737	653	768	758	729	91%
0.2	664	590	559	569	596	74%
0.3	402	390	611	695	525	65%

Lipids

A D-dimer control in the middle of the reportable range was divided into ten sample tubes. Each tube was spiked with different concentrations of Intralipid (Sigma I141; 117K07251). The assay results (Table 8) show that MRX147 D-dimer is affected by lipids; by linear interpolation the recovery is 90% at 2.5 g/L. The triglyceride concentration in normal samples is below 2.5 g/L, in hypertriglyceridemic samples above 5.0 g/L, and in samples from patients with high risk for pancreatitis above 10 g/L. Hence, with MRX147 D-dimer, high lipemic samples should be diluted and re-assayed.

Triglycerid es g/L	Replicate 1 ng/mL	Replicate 2 ng/mL	Replicate 3 ng/mL	Replicate 4 ng/mL	Mean ng/mL	Recovery
1.0	758	779	768	747	763	100%
2.9	643	643	664	674	656	86%
4.0	548	664	611	590	603	79%
7.0	507	465	486	454	478	63%
9.4	259	330	306	306	300	39%
12.0	223	235	259	259	244	32%

Heparin (non-fractionated)

A D-dimer control in the middle of the reportable range was divided into four sample tubes. Each tube was spiked with different concentrations of non-fractionated Heparin (Heparin LEO, DC6360). The assay results (Table 9) show that MRX147 D-dimer is only modestly affected by any of the tested Heparin concentrations.

Table 9: effect of non-fractionated Heparin on a D-dimer control

Heparin U/mL	Replicate 1 ng/mL	Replicate 2 ng/mL	Replicate 3 ng/mL	Replicate 4 ng/mL	Mean ng/mL	Recovery
0	800	810	768	810	797	100%
1	747	810	810	822	797	100%
10	753	857	845	869	831	104%
100	881	800	800	904	846	106%

Heparin (low molecular weight)

A D-dimer control in the middle of the reportable range was divided into four sample tubes. Each tube was spiked with different concentrations of LMW Heparin (Fragmin, Pfizer 8Q0007). The assay results (Table 10) show that MRX147 D-dimer is unaffected by any of the tested Heparin concentrations.

Table 10: Effect of low-molecular weight Heparin on a D-dimer control

Fragmin U/mL	Replicate 1 ng/mL	Replicate 2 ng/mL	Replicate 3 ng/mL	Replicate 4 ng/mL	Mean ng/mL	Recovery
0	768	758	789	810	781	100%
1	758	768	779	758	766	98%
10	810	716	822	737	771	99%
100	768	800	779	834	795	102%

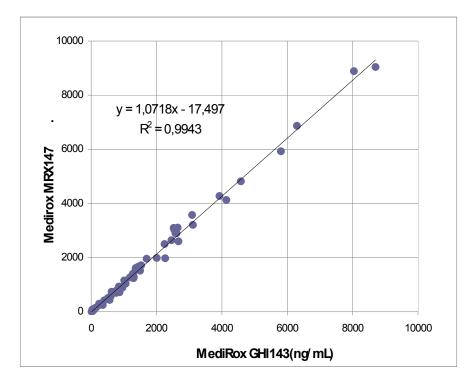

Correlation

Table 11: Correlation

Samples from 66 patients (referred for D-dimer testing to the Umeå University Hospital) were assayed in parallel with two different D-dimer methods: MediRox MRX147 D-dimer (lot # 00108242) on Coatron M4 and GHI143 (Trinity Biotech Auto-Dimer) (lot # S147053) on Sysmex CA-1500. The data (Table 11, Figure 3) show good correlation between the two methods:

MRX147 D-dimer = 1.07 x Auto-dimer - 17.5; R² = 0.99

Figure 3: Correlation MRX147 D-dimer versus GHI143 (AutoDimer)

Performance - instrument unrelated

Specificity

For a detailed study of the specificity of the monoclonal antibody in MRX147 D-dimer, please confer separate Technical Report.

Stability

Please confer separate Technical Report for a detailed account of the MRX147 D-dimer shelf-life and in-use stability.

Trinity Biotech Auto- Dimer	MediRox MRX147 DD
21	0
21	0
36	44
39	80
50 54	22 56
89	68
96	115
136	139
154	151
243	295
250	259
250	271
257	247
279 279	259
357	283 247
403	418
515	507
567	437
600	580
626	737
669	732
770	695
780	786
811 830	781 823
854	934
870	722
959	893
1014	1157
1035	1045
1057	1039
1190	1269
1252 1281	1339
1296	1410 1239
1300	1257
1307	1292
1365	1617
1368	1574
1440	1661
1460	1542
1499	1516
1531 1699	1715 1960
2008	1987
2249	2499
2267	1974
2459	2642
2527	3098
2545	3023
2582	2900
2613 2650	2901
2650	3105 2601
3089	3575
3114	3207
3928	4275
4138	4125
4584	4820
5806	5923
6300	6870
8043 8700	8885 9038
6/00	7030

